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Abstract
The use of a piezoelectric element (acoustic excitation) to vibrate the base of microcantilevers is
a popular method for dynamic atomic force microscopy. In air or vacuum, the base motion is so
small (relative to tip motion) that it can be neglected. However, in liquid environments the base
motion can be large and cannot be neglected. Yet it cannot be directly observed in most AFMs.
Therefore, in liquids, quantitative force and energy dissipation spectroscopy with acoustic AFM
relies on theoretical formulae and models to estimate the magnitude of the base motion.
However, such formulae can be inaccurate due to several effects. For example, a significant
component of the piezo excitation does not mechanically excite the cantilever but rather
transmits acoustic waves through the surrounding liquid, which in turn indirectly excites the
cantilever. Moreover, resonances of the piezo, chip and holder can obscure the true cantilever
dynamics even in well-designed liquid cells. Although some groups have tried to overcome
these limitations (either by theory modification or better design of piezos and liquid cells), it is
generally accepted that acoustic excitation is unsuitable for quantitative force and dissipation
spectroscopy in liquids. In this paper the authors present a careful study of the base motion and
excitation forces and propose a method by which quantitative analysis is in fact possible, thus
opening this popular method for quantitative force and dissipation spectroscopy using dynamic
AFM in liquids. This method is validated by experiments in water on mica using a scanning
laser Doppler vibrometer, which can measure the actual base motion. Finally, the method is
demonstrated by using small-amplitude dynamic AFM to extract the force gradients and
dissipation on solvation shells of octamethylcyclotetrasiloxane (OMCTS) molecules on mica.

S Online supplementary data available from stacks.iop.org/Nano/22/485502/mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Background

One of the great accomplishments of dynamic atomic force
microscopy (dAFM) methods is their ability to quantify the
local force gradients and energy dissipation that act between
the nanoscale tip of the AFM probe and the sample. This
allows the determination of surface and material properties at

the nanoscale and is of great interest to researchers in a wide
variety of disciplines.

One popular excitation method for dynamic AFM is the
so-called acoustic method, which uses a dither piezoelectric
element to mechanically vibrate the base of the cantilever. It
is well known that the piezo excitation spectrum in liquids
is filled with many apparent resonance peaks that are not
related to the cantilever resonance, which was first recognized
in [1]. This obscures the true cantilever dynamics and makes
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it difficult to determine the cantilever natural frequency and
quality factor, even in well-designed fluid cells.

Despite its known problems, many research groups still
use piezo excitation in liquids and it comes standard on nearly
all commercial AFMs. The reasons for its continued popularity
may include the fact that the alternatives, such as magnetic [2],
Lorentz force [3] or photothermal excitation [4], are more
complicated and expensive. Thus, there would be significant
interest in a conclusive demonstration of quantitative force
and dissipation spectroscopy in liquids using piezo-excited
AFM. Some groups have attempted to perform quantitative
spectroscopy in piezo mode with mixed success [5, 6] and
others have attempted to design custom fluid cells to reduce the
spurious resonances [7–10]. However, the general consensus is
that quantitative force or dissipation spectroscopy using piezo
mode in liquids remains difficult.

However, there is a much larger problem with acoustic
excitation in liquids that is often overlooked. This is the
problem of large base motion. The base motion cannot be
directly observed in typical AFMs that use the optical beam
deflection method. In air or vacuum environments, base motion
is negligibly small compared to the tip motion. Therefore, the
lack of knowledge of the base motion is not an obstacle to
quantitative measurements. However, in liquid environments,
base motion can be large [11–13]. Further, the observed
cantilever amplitude and phase are strongly affected by non-
resonant interactions due to the base motion in addition to the
classic resonant detuning effects ( [11, 5] and explained in
more detail in section 1.2.2). This problem of large, unknown
base motion exists regardless of the presence or absence of
piezo resonances, and would still be present even if the ‘forest
of peaks’ [1] were completely eliminated. Therefore, any
quantitative analysis for acoustic excitation in liquids must use
some theoretical formula or model to estimate the magnitude
of the unknown base motion.

A routine assumption is that the base motion is related
to the amplitude at resonance by the quality factor, e.g.
A0 ≈ Y Q, where A0 is the initial tip amplitude, Y is the
base motion and Q is the quality factor. Standard formulae
for force spectroscopy using piezo excitation include these
assumptions [11, 5]. Despite the fact that these assumptions
are critical to obtaining quantitative results, they have never
been tested experimentally.

The intent of this work, then, is to experimentally test
these commonly used assumptions. The layout of this paper
is as follows: first we will review some of the current
commonly applied formulae and point out some common
problems with them. Then, using a scanning laser Doppler
vibrometer, we directly measure a cantilever’s base motion
and demonstrate that current models generally greatly over-
predict the base motion (often >100% error). Then we present
a new, more accurate model. A key feature of this model is
that it includes two distinct components of excitation forces—
a structure-borne excitation (i.e. mechanical excitation from
the base motion) and a fluid-borne excitation (i.e. vibration
transmitted to the surrounding liquid from the vibrating piezo
which then applies an oscillating force to the cantilever).
The fluid-borne excitation forces are important in a liquid

environment as they are often of the same order as the
structure-borne forces. The fluid-borne excitation forces have
been recognized before [13–15], but previously there was no
method to separate the two components in an experimental
measurement. The central contribution of this work is a
simple method to distinguish these two different types of
excitation, thereby leading to accurate estimates of the base
motion which in turn leads to accurate spectroscopy formulae.
These estimates can be performed on any AFM and do not
require any additional hardware. This method is validated
experimentally. Finally, we develop force spectroscopy
equations that take both types of excitation into account, and
then demonstrate use of the method on the oscillatory forces
of octamethylcyclotetrasiloxane (OMCTS) over mica using
small-amplitude dynamic AFM.

1.2. Common mistakes in using standard formulae for force
and dissipation spectroscopy using piezo excitation in liquids

In this section, we review some of the commonly used standard
AFM formulae. Many AFM researchers use these formulae
without recognizing some of the assumptions regarding base
motion that are made in their derivation. Therefore, the goal
in this section is to point out those assumptions explicitly and
show where they break down in liquid environments. This will
then serve to motivate the further study of piezo excitation in
liquids.

1.2.1. Review of equations for air/vacuum. First, we review
the formulae for air/vacuum for later comparison. In the event
that the amplitude is small (compared to some length scale of
the interaction force) and the excitation frequency is near the
j th natural frequency, the governing differential equation of an
AFM cantilever is often approximated by the linear point-mass
model

q̈(t)

ω2
j

+ q̇(t)

ω j Q j
+ q(t) = kintq(t)+ γ q̇(t)

k j
+ Fdrive cosωt

k j
(1)

where q , ω, ω j , k j , kint, γ , Q j and Fdrive are the cantilever
deflection, driving frequency, natural frequency, equivalent
modal stiffness, sample stiffness, sample damping coefficient,
quality factor and driving force, respectively. This equation
can be solved for the response amplitude and phase and
then inverted to give the linear AM-AFM force spectroscopy
formula [16]

kint = k j

(
ω2

ω2
j

− 1 + A0 cosφ

AQ

)
(2)

where A, φ and A0 are the first harmonic amplitude,
first harmonic phase and unconstrained (initial) amplitude,
respectively. A similar formula exists to find γ . In air
or vacuum; (2) is applicable regardless of the method of
excitation.

1.2.2. Typical point-mass models used in liquid environments.
Several authors have recognized that, in liquid environments,
the choice of excitation matters. Specifically, in acoustic
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excitation the total tip motion is the sum of cantilever deflection
q and base motion Y . Base motion can be quite large in liquids.
Equation (1) is then modified to be

q̈(t)

ω2
j

+ q̇(t)

ω j Q j
+ q(t)

= kint (Y (t)+ q(t))+ γ
(
Ẏ (t)+ q̇(t)

)
k j

+ Fdrive cosωt

k j
. (3)

There are two new terms kintY and γ Ẏ , which we will refer to
as base–sample work terms. These terms represent the fact that
the base motion creates a tip–sample interaction force, which
in turn can cause a motion of the tip q(t). In other words, even
if Fdrive = 0, an oscillating motion of Y in the presence of a
sample will cause an oscillating motion of q . The observed
amplitude and phase will thus be modified by the base–sample
work, which is not accounted for by (2). A common extension
of (2) to account for the base–sample work is [11, 5]

kint = k j

(
ω2

ω2
j

− 1 + Y (Y + A cosφ)

Y 2 + A2 + 2Y A cosφ

)
. (4)

However, the base motion Y cannot be directly observed using
the optical beam deflection method, it must be estimated using
some model of the cantilever dynamics. The typical ad hoc
point-mass model theory gives

A0(ω)eiφ0(ω)

Y (ω)
=

(ω2 − iωω j

Q j
)

ω2
j + iωω j

Q j
− ω2

. (5)

For the case ω = ω j , the magnitudes in (5) reduce to

|Y | = A0√
1 + Q2

j

. (6)

Equation (5) can be combined with (4) to yield [11, 5]

kint = k j

(
ω2

ω2
j

− 1 + A0

A

×
(

cosφ + A0/A
√

1 + Q2
j√

1 + Q2
j + (2A0 cosφ)/A + A2

0/(A
2
√

1 + Q2
j

))

(7)

Another common formula in AM-AFM is the energy
dissipation formula [17], which can be written in this form:

P = 1

2

k jω

Q j

(
A0 A sinφ − A2 ω

ω j

)
. (8)

This equation assumes A0 = Y Q j , which is an approximation
to (6) valid for high Q.

1.2.3. The continuous beam theory. There are several
problems with the approach of section 1.2.2. First, (5) and (6)
are derived from a model of a point-mass oscillator and neglect

the continuous nature of the cantilever beam. Using Euler–
Bernoulli beam theory to take into account the shape of the
eigenmode yields (for ω = ω j ) [18, 13]:

|Y | =
∫ L

0 ψ
2
j (x) dx∫ L

0 ψ j (x) dx

A0√
1 + Q2

j

= α j

β j

A0√
1 + Q2

j

(9)

where ψ j (x) is the j th eigenmode shape and L is the length
of the beam. A complete derivation of this equation can be
found in the supplementary information (available at stacks.
iop.org/Nano/22/485502/mmedia). The values of α j/β j for
j = 1 · · · 4 are 0.639, −1.15, 1.97 and −2.75. There are
two things to note: first, the values are different for different
eigenmodes, which means that the ratio between base motion
and tip motion must be different for different eigenmodes1,
but (6) treats all eigenmodes the same. Second, for some
eigenmodes, α j/β j is positive, but for others it is negative.
This indicates a phase difference between tip and base. For
example, for ω < ω j , positive α j/β j means that, when the
base moves up, the tip moves up. Negative α j/β j means that
when the base moves up the tip moves down. For this reason
the ad hoc point-mass model (6) and the resulting formula
equation (7) can be quite inaccurate.

1.2.4. Frequency modulation force spectroscopy. Other types
of dynamic AFM have their own standard formulae, which also
have similar problems regarding base motion. For example,
in (1), a change in kint will cause a change in the natural
frequency of the oscillator, which in turn causes a shift in
phase. Therefore FM-AFM uses a feedback loop to change
the driving frequency to keep phase constant, thus keeping the
driving frequency equal to the natural frequency. However,
from (3), it is clear that, with acoustic excitation, a change
in kint will also cause a change in the phase due to the kintY
term. Therefore, in liquids, keeping phase constant does not
necessarily keep the driving frequency fixed at the natural
frequency. FM-AFM formulae that calculate kint based on the
driving frequency such as [21] will thus be in error.

1.2.5. Motivation for the present work. In air or vacuum,
Q � 1, so that Y � A0. Therefore calculating the base
motion incorrectly or even neglecting it completely does not
significantly affect most calculations. However, in liquids, Q
is typically in the range of 1–6, such that Y is of the same order
as A0. Therefore it is important to calculate it correctly. A
natural question to ask is: does (9) still hold in liquids? Many
authors have assumed that it does, but to our knowledge, this
has never been tested experimentally.

We will show in this paper that the use of (9) or the ad
hoc (5) in liquids leads to significant errors in the base motion
magnitude, which in turns leads to major errors in force and
dissipation spectroscopy. We then propose an experimental
protocol coupled with theoretical modeling that does allow
an experimentalist to correctly identify the magnitude of
base motion and correctly measure interaction forces and
dissipation in piezo-excited AFM in liquids.

1 Strictly speaking, β and α can be altered by the presence of a tip mass on
the end of the cantilever, but for liquids this effect is weak [19, 20].
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2. Experimental measurement of base motion in
liquids using laser Doppler vibrometer

Typical AFMs using the optical beam deflection method with
photodiodes actually measure the slope of the cantilever, not
the actual deflection. Because a cantilever has zero slope
at its base, typical AFMs are not able to measure the base
motion. To directly measure the base motion in liquids we use a
scanning laser Doppler vibrometer (LDV) (MSA-400, Polytec,
Waldbronn Germany, typical laser spot 1–2 μm). The LDV
measures the Doppler shift of laser light which is reflected off
a surface, and thus is able to directly measure the velocity of
any point on the cantilever. For this experiment, a Mikromasch
NSC36 cantilever is attached to a piezo in a custom-built liquid
cell. The experimental set-up is shown in figure 1(a) and is
similar to that used in [19].

To test the theoretical models for base motion described in
section 1.2, we measure both the tip motion and base motion
over a range of frequencies. The result is shown in figures 1(b)
and (c). The raw data shows many peaks, which correspond to
piezo or liquid cell resonances. Note that these peaks occur
in both the tip motion and base motion—therefore the base
motion is not constant with frequency, as has been assumed
in some prior literature [13]. However, when the relative
tip motion (tip–base) is divided by the base motion, a clean
cantilever resonance peak is obtained (figure 1(d)).

The experimental data is curve-fitted (least squares) to
the theoretical models given in section 1.2.5. Specifically,
for the line labeled ‘point-mass model’, the right-hand side
of equation (5) is curve-fitted to the data with ω1 and Q1 as
the two fitting parameters. Both the experimental data and
equation (5) were normalized to unity magnitude at resonant
before the fit2. The same procedure is followed for the line
labeled ‘Ideal beam model’, except α j/β j is included.

The model of equation (9) clearly does not match
the experiment. Specifically, although the shape of the
curve matches well, the magnitude at resonance is off by
nearly a factor of two. This will directly lead to errors
in force spectroscopy formulae. It is important to note
that such errors would still be present even if all piezo
resonances could be removed by redesigning the piezo/liquid
cell. Further, equation (9) does not depend on stiffness, so
simply increasing the cantilever stiffness will not eliminate the
problem (however, stiff commercial cantilevers typically have
a somewhat higher quality factor than soft ones, which does
reduce the problem).

Therefore, we can conclude that (9) does not hold, in
general, in liquids. In particular, in figure 1, the cantilever base
is moving 40% less than expected from (9) for the observed
tip motion. How is this possible? The logical conclusion is
that there must be some other additional driving force, which
is moving the cantilever tip but not its base. We explore this
idea in section 3.1.
2 This normalization allows the curve fitting to match the location and width
of the peak correctly without regard to the height of the peak. Without
normalization, the curve fit may overestimate the quality factor in order to
match the peak height correctly. This is because the point-mass model has
only two free parameters and thus the three quantities (location, width and
height of the peak) cannot all be fitted simultaneously.

Figure 1. Experimental piezo-driven frequency sweep of a cantilever
in water far from any surface. (a) Schematic of set-up: a scanning
laser Doppler vibrometer is used to measure motion at multiple
points along the cantilever, including tip and base. The raw data
((b) amplitude and (c) phase) shows many peaks indicating piezo
resonances. Dividing the (relative) tip motion by the base motion
reveals the underlying cantilever transfer function ((d) amplitude and
(e) phase). The ideal beam model (9) has an amplitude error of 70%
and the point-mass model (6) has an amplitude error of 167%. In
contrast, the new model given in section 3.1 fits the data nearly
exactly. All of the models fit the phase well, although the new model
is slightly better below resonance. (In (e), point-mass model gives
the same phase as ideal beam model and thus is not shown.)
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Figure 2. There are two different types of excitation caused by the
dither piezo in liquids. First, extension and contraction of the piezo
crystal causes the base of the cantilever (i.e. the chip) to move up and
down. Because of inertial and fluid forces, the cantilever bends when
the base is displaced. Second, acoustic waves travel from the piezo
through the liquid and excite the cantilever directly. The total
excitation on the cantilever is a linear combination of these two types
of excitation.

3. Proposed theory

3.1. The fluid-borne excitation force

We have demonstrated that the base motion and tip motion
in liquids are not related by (9) and that there must be some
additional force driving the cantilever, which is yet to be
identified. A potential candidate for this force is the unsteady
motion of the liquid in the cell, which in turn is generated by
the vibrating piezo. Such a fluid forcing has been postulated
by several authors before [13, 14, 22, 15]. We will refer to
this excitation as ‘fluid-borne excitation’, in contrast to the
mechanical excitation of the cantilever base, which will be
referred to as ‘structure-borne excitation’. These two different
excitations are illustrated schematically in figure 2.

The most general description is due to [13], who makes
the following two assumptions. First, both the structure-
borne excitation and fluid-borne excitation are generated by
the vibrating piezo. Therefore, we assume that both the
oscillating base motion and the oscillating local flow velocity
around the cantilever are linearly proportional to the piezo
motion. Second, the oscillating flow velocity is assumed to
be approximately constant along the length of the cantilever,
allowing the use of the hydrodynamic function to describe the
forces [23, 24]. With these assumptions, it can be shown (see
supplementary information available at stacks.iop.org/Nano/
22/485502/mmedia) that the complex transfer function relating
the amplitude and phase of the tip motion to the base motion,
when corrected for the forcing from unsteady liquid motion, is

A0(ω)eiφ0(ω)

Y (ω)
= β j

α j

(ω2 − iωω j

Q j
)(1 + Afluid(ω))

ω2
j + iωω j

Q j
− ω2

(10)

where A0 and φ0 are the unconstrained amplitude and phase,
and Afluid is a dimensionless complex constant indicating
the relative magnitude of the fluid-borne to structure-borne
excitation. Note (10) is valid only for drive frequencies within
the cantilever resonance bandwidth. For drive frequencies
outside this range, multiple eigenmodes may respond and
the full frequency-dependent hydrodynamic function must be
included instead of just using a quality factor Q j .

The two limiting cases are Afluid → 0, in which the
structure-borne-only formula (9) is recovered, and Afluid →
∞, which implies Y → 0 and leads to fluid-borne excitation
only (similar to the models of [14, 15]). Thus, this unifying
model is sufficiently general to capture the behavior of all
previous models.

We now apply the above theory to the data presented in
figure 1. A least-squares fit of (10) to the data gives a value
of Afluid of 0.92 + 0.013i, which fits the data nearly exactly3.
This confirms the hypothesis that fluid motion is responsible
for the additional forcing. The value 0.92 + 0.013i should
be interpreted as indicating that the fluid-borne excitation
forces are about the same magnitude as the structure-borne
excitation and are approximately in-phase with the structure-
borne excitation. This means that, by neglecting the fluid-
borne forces, the previous model was neglecting almost half
of the total excitation force applied to the cantilever. This now
explains why the previous theory’s prediction of base motion
was off by nearly a factor of two.

Thus far we have proved by direct LDV measurement of
base and tip motion in liquids that the fluid-borne forcing Afluid

is significant. Is it possible to easily determine Afluid in a
commercial AFM with a photodiode where base motion cannot
be directly measured? We address this topic in section 3.2.

3.2. Proposed method to quantitatively determine the
fluid-borne excitation and base motion

As previously mentioned, the base motion cannot be directly
observed with typical AFMs. However, when a cantilever is
in permanent contact with a stiff sample such as mica, the tip
is not moving up and down (the indentation is small because
the sample is stiff), but the cantilever is still flexing due to
the base motion. Because the optical beam deflection method
measures the slope at the free end of the cantilever, there is
still some measured motion [25], which we refer to as the
residual amplitude Ares and phase φres. Some authors [13]
have suggested that Ares ≈ Y and thus used Ares to measure
Y (and then Afluid). In fact, the fluid-borne excitation force still
acts even when the tip is in permanent contact. Therefore Ares

is, in general, a function of both base motion and fluid-borne
excitation, so Ares cannot be equated to Y .

However, it is possible to determine a procedure to
solve for the two unknowns, base motion Y and fluid-borne
excitation Afluid, simultaneously. To solve for two unknowns,
two known measurements must be made. The first known
condition is when the tip is far from the sample, from which we
can obtain the initial amplitude A0 and phase φ0 (sometimes
called free/unconstrained amplitude and phase). A second
known condition is permanent contact with a stiff sample from
which we can obtain the residual amplitude Ares and phase φres.

The equation describing the indicated residual motion can
be derived (see supplementary information available at stacks.
iop.org/Nano/22/485502/mmedia) by assuming that the beam
is described by a clamped–pinned boundary condition and does
not slip on the surface. For excitation frequencies near the

3 In this case we assumed Afluid to be constant over the entire frequency range
shown, although in general it may be an arbitrary function of frequency.
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cantilever’s first natural frequency, and assuming that only the
first eigenmode responds, the relation is

Arese
iφres = Y

1.376

×
(

−5.71
(0.510 + 0.861Afluid)(ω

2 − iωω1
Q1
)

19.23ω2
1 + iωω1

Q1
− ω2

− 3

2

)
. (11)

A general formula for higher eigenmodes is in the
supplementary information (available at stacks.iop.org/Nano/
22/485502/mmedia). The procedure to determine Y and Afluid

from measurements of free and residual motion is as follows.

(i) Acquire a thermally driven spectrum and determine
the cantilever’s natural frequency ω j and quality factor
Q j from it using a curve-fitting procedure (details in
section 6.1).

(ii) Choose a drive frequency ω close to the natural frequency
(within the thermal resonance bandwidth). The same drive
frequency must be used for the entire experiment. If the
drive frequency is changed during the measurement, this
process must be repeated at the new frequency.

(iii) Perform a tapping mode approach curve on a stiff sample4

and note the initial amplitude/phase A0, φ0 and residual
amplitude/phase Ares, φres. The approach curve should
be extended in either direction until the amplitude and
phase stop changing with Z (e.g. in figure 3, a curve that
included only Z = 5 to −5 would not capture the initial or
residual conditions adequately). As the permanent contact
measurement may blunt the tip, researchers may wish to
perform this calibration after their measurements.

(iv) Equations (10) and (11) are written using a phase
lead convention, so if the instrument uses a phase
lag convention, convert φres and φ0 to the phase lead
convention5 (in radians).

(v) Solve (10) and (11) simultaneously to yield the base
motion Y and fluid-borne excitation factor Afluid. The most
general expression for Y and Afluid in terms of the seven
variables ω,ωi , Qi , Ares,φres,A0, and φ0 is very long so
it is not given here. However, these equations can be
solved easily numerically once the values of the variables
are known.

Computer software to automate steps (iv) and (v) is freely
available from [26].

4. Experimental validation of proposed formula by
integration of AFM and LDV

We demonstrate this method by directly integrating the laser
Doppler vibrometer (LDV) with an AFM. This allows us
to directly validate the method proposed in section 3.2. A
Nanotec AFM with a liquid cell is placed underneath the

4 ‘Stiff’ is defined relative to the stiffness of the cantilever and the radius of
the tip. For cantilevers with k < 2 N m−1 and typical tip radii of 10 nm or
more, mica (E ≈ 60 GPa) is sufficiently stiff. For stiffer cantilevers, silicon or
sapphire would be required.
5 Phase lead convention means that phase angle decreases as frequency is
swept up across resonance and phase lag means phase angle increases as
frequency is swept up across resonance.

Figure 3. (a) Schematic of experimental set-up. A Nanotec AFM
head is placed under a scanning laser Doppler vibrometer. The
vibrometer is able to measure both base and tip motion. (b) Dynamic
approach curves (tapping mode) for a cantilever on mica in deionized
water. The drive frequency, 28.4 kHz, is chosen as the piezo
resonance peak closest to the natural frequency, 29.5 kHz. The data
has been smoothed to reduce noise. The procedure to calculate base
motion from the curve is as follows: first, identify the quantities
A0, φ0, Ares, φres at the points labeled on the graph; second, acquire a
thermally driven spectrum to obtain the quantities Q j , ω j ; and finally
solve for Y and Afluid in (10) and (11). The result is shown in table 1.

LDV. A Veeco OLTESPA cantilever (k = 1.7 N m−1 nominal,
f = 29 kHz, Q = 2.96) is used in deionized water. The
experimental set-up is similar to that used in [27] and is shown
in figure 3(a).

An example dynamic approach curve is shown in
figure 3(b). Solving (10) and (11) simultaneously predicts that
the magnitude of the (relative) tip motion is 8.6 times the base
motion. The predictions of this quantity from previous theories
is also calculated. All the quantities are listed in table 1. The
proposed theory matches the measurement within about 15%.
This error is significantly better than the ideal beam model
(error > 100%) and the point-mass model (error > 200%).
The calculated value of Afluid for this curve is 0.83–0.18i, or
0.85 at an angle of −13◦. Again, these fluid-borne excitation
forces are about the same magnitude as the structure-borne
excitation and are approximately in-phase with the structure-
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Table 1. Comparison of measured base and tip motion for the experiment of figure 3 compared against various models. The new model
prediction is significantly better than previous models.

Model predictions (using AFM data)

Direct LDV measurement Point-mass model Ideal beam model New model

(Tip−Base)
Base 9.6 2.9 4.5 8.2

Error (Meas.−Model)
Model (%) 231 113 17

borne excitation. An approximately in-phase force is to be
expected based on the relatively long acoustic wavelengths
compared to the size of the liquid cell [15].

The potential sources of error in the proposed method
include:

• It is assumed that the indentation into the stiff calibration
sample is zero but in fact there is some non-zero
indentation. Note: this assumption implies that the
contact resonance frequency is assumed to be equal to the
theoretical value of a clamped–pinned beam. Measuring
the actual contact resonance frequency could reduce the
error in estimating the base motion.

• It is assumed that there is no lateral slipping of the tip
when in permanent contact with the calibration sample but
the tip may slide a small amount.

• It is assumed that only one eigenmode responds.

• The optical lever sensitivities values used in (11) assume
a small laser spot placed near the free end of the
cantilever. As the laser spot is moved towards the base,
the sensitivity to residual motion decreases, therefore (11)
would tend to underestimate base motion. The error is
less than 10% provided that the spot is no more than
12% of the length from the free end. There is a similar
effect as the spot size increases. The derivation in the
supplementary material (available at stacks.iop.org/Nano/
22/485502/mmedia) could be corrected for these effects if
the size/position is known.

• There may be errors in fitting the thermal response to find
Q j and ω j .

• There will be some error if the driving frequency is not
sufficiently close to the natural frequency of the cantilever
(within approximately ω j/Q j of the thermal resonance)
as discussed in section 3.1.

5. Example quantitative force reconstruction

In section 4, we have shown that the cantilever excitation
when using a piezo in liquids is driven by two different forces,
the structural-borne excitation, which causes a base motion,
and the fluid-borne excitation, which actuates the cantilever
directly. We have demonstrated a simple method in which the
magnitude of the base motion and fluid-borne excitation can be
estimated. Now, with that knowledge, we examine a common
force spectroscopy formula (i.e. recovering the physical tip–
sample forces from the observed amplitude and phase) and
provide a correction to account for the fluid-borne excitation.

5.1. Phase offset

Before giving the force spectroscopy formulae, there is a subtle
but important point to address. In a typical AFM, the measured
value of phase lag φ is not the true cantilever phase lag but
includes offsets due to the electronics. In acoustic excitation
in particular, there can also be significant phase offsets due
to piezo resonances. For Q � 1, it is known that the true
cantilever phase lag away from the sample (φ0) is 90◦, so the
instrumental phase offsets are compensated for by setting the
phase to 90◦. However, with acoustic excitation in liquids, φ0

is not necessarily 90◦. For example, for Q1 = 1.2, ω = ω1

and Afluid = 0, Equation (10) gives φ0 = 134◦. Thus the
typical practice of setting the phase to 90◦ at the beginning of
the experiment is incorrect in liquids with piezo excitation and
does not remove the instrumental offsets.

The common force spectroscopy formulae incur sig-
nificant errors if the instrumental phase offsets are not
removed. Specifically, the interaction stiffness and damping
will show constant offsets (i.e. they are non-zero far from
the sample) and the conservative and dissipative interac-
tions will be coupled [5]. To remove the instrumental
phase offsets [11] suggests that the phase should be set to
cos−1(Q/

√
1 + Q2) + π/2 for the on-resonance case (and

by analogy cos−1(− Im(G)/|G|) + π/2 for the off-resonance
case, where G is the right-hand side of (5) and Im means the
imaginary part of a complex number). One problem with this
is that the cos formulation is only valid for φ0 between 0◦ and
180◦. Simply taking Arg G, where Arg denotes the argument
of a complex number (e.g. ‘angle’ in Matlab) is valid over 0◦–
360◦. The second problem is that (5) neglects the fluid-borne
loading and (10) must be used instead. A similar procedure is
suggested in [5], but it too neglects fluid-borne loading.

The neglect of fluid-borne loading can be significant. Even
modest amounts of fluid-borne excitation can cause (5) to
differ from the true phase by a few degrees. For example, the
procedure of section 3.2 gives a value of Afluid = 0.14 − 0.12i
for our Asylum MFD-3D (data not shown). This magnitude is
more than four times smaller than the value found in sections 4
or 3.1 for other AFMs, but it is still large enough to cause
equation (5) to have a phase error of 8◦ (for Q1 = 1.2, ω =
ω1), which is a large enough offset to cause 35% or more
error in the common force spectroscopy formulae. Therefore,
accurate knowledge of the fluid-borne loading will still be
required to correctly remove instrumental phase offsets, even
when the effects on the magnitude of base motion are relatively
small.

In the method proposed in this paper, the instrumental
phase offsets will cause the calculated value of Y to be a
complex-valued quantity. We can remove the phase offsets
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by setting the phase of Y to be zero (i.e. purely real) after the
calculation6. Specifically let Y and φ be the experimentally
measured quantities (in phase lead convention). Then the
adjusted quantities are Ỹ = |Y | and φ̃ = φ−Arg Y , where φ̃ is
the true cantilever phase with the instrumental offsets removed.

5.2. Small-amplitude (linear) tapping mode formulae

As described in section 1.2, several authors have correctly
recognized that the small-amplitude force spectroscopy
equations for piezo mode must take into account the base–
sample work terms [5, 11]. However, these works have two
shortcomings: they generally neglect the continuous nature of
the cantilever beam and they neglect fluid-borne excitation.
Both of these omissions will result in overestimating the
base motion and thus incorrectly reconstructing the tip–sample
interaction stiffness and damping. In what follows, we present
a formula that correctly accounts for the base motion. The total
driving force in the j th eigenmode is

F(ω) = Ỹ k j

ω2
j

β j

α j

(
ω2 − i

ω j

Q j
ω

)
(1 + Afluid). (12)

From this, the formula taking into account the base motion
and fluid-borne excitation is (see supplementary information
for derivation available at stacks.iop.org/Nano/22/485502/
mmedia):

kint = {A(ω2
j QFi − Ỹω jωk j) sin φ̃ + AQ jω

2
j Fr cos φ̃

+ ω2
j Q j Ỹ Fr + Q j k j(A

2 + AỸ )(ω2 − ω j
2)}

{ω2
j Q j (2AỸ cos φ̃ + Ỹ 2 + A2)}−1 (13)

γ = −{AQ j(Ỹω
2k j − Ỹω2

j k j − ω2
j Fr A) sin φ̃

+ A(Ỹω jωk j + ω2
j Q j Fi) cos φ̃ + ω2

i Q j Ỹ Fi

+ ω jωA2k j}{ω2
jωQ j (2AỸ cos φ̃ + Ỹ 2 + A2)}−1 (14)

where Fr and Fi are the real and imaginary parts of F
from (12). Note that these formulae are only valid when
the total tip motion (including the base motion) is small, not
necessarily when the observed relative amplitude is small.
These formulae are valid in both standard tapping mode
(constant excitation) and in constant-amplitude mode (where
A is kept constant by adjusting Y ).

Finally, the expressions are valid only when the interaction
stiffness kint is significantly less than the interaction stiffness
on the sample where the residual amplitude was calculated.
In other words, the assumption of section 3.2 is that the
calibration sample is infinitely stiff. This is a reasonable
assumption when kint is significantly softer than the calibration
sample.

There also large and arbitrary amplitude AM-AFM force
spectroscopy formulae (e.g. [28–30]) which could potentially
be modified to include the effects of base motion and fluid-
borne loading, although we do not attempt that here.

6 It is also possible to calculate the true cantilever phase φ0 from (10) prior
to the experiment and then use this value to remove the instrumental phase
offsets.

5.3. Experimental demonstration

We now demonstrate the use of the proposed small-amplitude
force spectroscopy equations (13) and (14) using AM-AFM.
The sample studied is octamethylcyclotetrasiloxane (OMCTS),
a non-polar, nearly spherical molecule on a mica substrate.
OMCTS has been well studied in the AFM literature ([31–34])
and is known to layer near solid surfaces, giving rise
to oscillations in the tip–sample forces [35] that have a
period of approximately one molecule diameter (∼8 Å). In
particular some groups have used small-amplitude piezo-
excited AM-AFM to study OMCTS [5, 36], making it a
relevant demonstration sample for this theory. The OMCTS
(Sigma Aldrich) was dried for several days using 4 Å molecular
sieves (Mallinckrodt Chemicals) prior to measurement. An
Agilent 5500 AFM with a Mikromasch NSC36 cantilever (Nat.
freq = 40.4 kHz, Q = 2.6, k = 1.54 N m−1 by the thermal
method) was driven at a free oscillation amplitude of 1.7 Å at
a frequency of 27.1 kHz.

The results are shown in figure 4. The raw amplitude and
phase is shown in figure 4(a). The results are plotted versus
the mean gap, which is d = Z + M , where M is the mean
deflection7. The mean deflection is often neglected in the
literature. The d = 0 point is chosen to be the point at which
the mean deflection is minimum. From these curves Afluid is
calculated to be 0.72 + 0.08i.

In figure 4(b) the interaction stiffness kint versus mean gap
is shown for the two theories. The stiffness is not plotted
left of d = 0 as the formulae are not valid once the tip
enters permanent contact with the substrate (see section 5.2).
The line labeled ‘ideal theory’ shows the results according
to the formulae presented in [5]. The new theory is (13)
and (14). The results are similar far from the sample, but the
theories diverge closer to the sample. In fact, at the very last
shell before the surface they are completely different. When
approaching the sample, the tip amplitude is decreasing but the
base motion is constant. Therefore, accurate knowledge of the
base motion becomes increasingly more important as the tip
approaches closer to the sample. In figure 4(c) the integrated
force F(d) = ∫ ∞

d kint(x) dx from the two theories is shown
and this is compared to the mean force (i.e. mean deflection
times stiffness). The new theory is close to the mean force, as
expected, but the previous theory is not. Finally, in figure 4(d)
the damping is shown. Again, the two theories are similar far
from the sample but diverge close to the sample.

Note that figure 4(c) shows a net overall repulsive force.
This may be indicative of a trace amount of water remaining in
the OMCTS sample [35].

6. Discussion

6.1. Frequency dependence: the forest of peaks

This work has made little mention of the ‘forest of
peaks’ [14, 1] caused by piezo resonances and liquid cell

7 A more typical case would be to plot versus minimum gap d = Z+M−Atot ,
where Atot is the total amplitude (tip motion plus base motion). But because
the two theories make different predictions for Atot, mean gap makes for an
easier comparison.
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Figure 4. Small-amplitude AM-AFM force spectroscopy on
OMCTS solvation shells over mica. (a) Schematic showing
confinement-induced ordering in liquid between solid surfaces as the
gap is changed (σ is the molecular diameter). This gives rise to
oscillations in the liquid density and thus tip–sample force
(after [39]). (b) Raw amplitude and phase. (c) Calculated stiffness
comparing the previous models [11, 5] to the new model proposed in
this work (note: the phase is shifted differently for each theory
according to the discussion in section 5.2). (d) Calculated force
(integrated from stiffness in (c)) compared to the experimentally
measured mean force. (e) Calculated damping comparing the
previous models to the new model proposed in this work.

resonances, which has been the subject of many articles.
In fact, in AM-AFM or PM-AFM (phase modulation), the
drive frequency stays at a fixed frequency during the entire
experiment. Therefore the presence of piezo resonances is not
necessarily a barrier to quantitative force spectroscopy. The
only difficulty it poses is in identifying the natural frequency
and quality factor to use in the equations given in this work.

Figure 5. Comparison of thermally driven and piezo-driven spectra
for a typical cantilever (Mikromasch CSC37, k = 0.37 N m−1) in
water, taken in an Agilent 5500 AFM.

Figure 5 shows that the apparent quality factor is different
in the thermally driven spectrum than in the piezo-driven
spectrum. These apparent quality factors in the driven
spectrum are related to the piezo (and mechanical components
such as the chip holder) and not to the cantilever. Thus
Q must be determined from a thermally driven spectrum.
Also, due to the low quality factors in liquid, shortcuts such
as determining the natural frequency from the peak of the
spectrum, and determining the quality factor from the half-
power bandwidth are not accurate. A curve-fitting procedure
must be used. In other words, fit the observed power spectral
density (in m2 Hz−1) to S0 + S1 H 2(ω/ω1, Q1), where the
fitting parameters are a background noise floor S0, a scalar
S1, natural frequency ω1 and quality factor Q1 and the transfer
function is defined as H (ω/ω j, Q j ) = 1/(1 + i

Q j

ω
ω j

− ( ω
ω j
)2).

Then the drive frequency can simply be set to the piezo
resonance closest to the cantilever resonance8. Researchers
should keep in mind that the base motion and fluid-borne
excitation may vary from one piezo resonance peak to another,
but once these are determined that should not cause further
trouble.

However, for frequency modulation AFM, the ‘forest of
peaks’ can cause significant problems, and removing the piezo
resonances is necessary (but not sufficient) for quantitative
AFM. This result is detailed in a recent paper [37].

Researchers who attempt to build better piezo actuators
in order to reduce the forest of peaks (such as [7–10]) must
be cautioned that even the complete removal of all piezo
resonances is not sufficient to enable quantitative AFM (either
AM or FM). The fluid-borne excitation and large base motion
will still be present regardless of whether piezo resonances are
present.

6.2. Off-resonant operation

This paper has focused on operation near resonance (either the
fundamental eigenmode or a higher one). Some groups have
utilized excitation very far below resonance (for example [36]).

8 Or even a closer frequency. Despite the fact that most researchers are
conditioned to pick the drive frequency at a peak in the excitation spectrum,
it is not required to drive exactly at a piezo resonance. One can pick a
frequency that is closer to the cantilever resonance, so long as sufficient
response amplitude is achieved.

9
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Operation far below resonance should avoid some of the
difficulties discussed in this paper because the influence of
fluid-borne excitation is expected to be small. However,
such non-resonant operation is generally possible only with
fiber optic interferometer detection schemes, which are able
to measure the cantilever tip displacement directly. The
primary problem with fluid-borne excitation arose from the
photodiode’s inability to measure base motion. Therefore,
for groups which possess interferometers or other direct
measurement systems, the choice of resonant versus non-
resonant operation will not be strongly influenced by fluid-
borne excitation concerns.

6.3. Uncertainty

This work has, for the first time, provided an experimentally
validated equation for quantitative force and dissipation
spectroscopy when using piezo excitation in liquids. Once
the base motion is known, (13) and (14) (or their counterparts
for other modes) will be just as accurate as the expression for
magnetic excitation. However, some additional uncertainty has
been introduced in the estimate of the base motion from (10)
and (11). Therefore, in AFMs which use a traditional optical
beam deflection method and photodiode, direct excitation
methods such as magnetic, Lorentz force or photothermal
will avoid the uncertainty associated with estimating the base
motion. Interferometer-based AFMs [36, 38] could directly
measure the base motion, so the methods should be equivalent
using those instruments.

6.4. Influence of AFM system used

Researchers with various different AFM configurations will
be interested to know if fluid-borne excitation is significant
in their systems. This can be simply tested by performing an
AM-AFM approach curve on a hard surface and following the
procedure in section 3.2. This will yield a complex value of
Afluid. If the magnitude of Afluid is greater than about 0.05,
then fluid-borne excitation is significant and should not be
neglected.

In total, we have performed measurements on three
different commercial AFM liquid cells (Nanotec, Agilent,
Asylum) and one custom-built liquid cell. All four liquid
cells showed significant amounts of fluid-borne excitation,
indicating that this a general effect in AFM and is not limited
to one specific manufacturer.

7. Summary

In summary, we have demonstrated that accurate knowledge
of the base motion in piezo-excited AFM is necessary for
quantitative force or dissipation spectroscopy in liquid because
the large base motion can alter the observed amplitude and
phase through the base–sample work terms. Large base motion
is present regardless of the presence or absence of the ‘forest
of peaks’. We have shown that the actual base motion in piezo-
excited AFM in liquids is typically smaller than predicted by
previous formulae. This point had been missed by the AFM
community for many years because the base motion is not

directly observable in typical AFMs and there was no way
to confirm or refute the previous theories. Our experiment
utilized a scanning laser Doppler vibrometer that was able to
directly determine the base motion. From these observations,
we have confirmed that there is a force acting on the cantilever
transmitted from the piezo through the unsteady motion of the
surrounding fluid (fluid-borne excitation), in addition to the
mechanical excitation of the base (structure-borne excitation).

We have demonstrated a method to accurately estimate the
base motion and fluid-borne loading, and validated it with laser
Doppler vibrometer measurements. This new method does not
require any additional hardware.

Finally, we formulated small-amplitude force spec-
troscopy equations based on the new theory and demonstrated
them on a representative sample. The results show that force
spectroscopy equations based on the previous theory have
significant errors due to the inaccurate assumptions about
the magnitude of the base motion. Further, the fluid-borne
excitation can affect the phase of the response. Thus, without
accurate knowledge of the fluid-borne loading, it may not be
possible to remove instrumental phase offsets that can cause
significant errors in force spectroscopy.

The new proposed method will allow researchers to obtain
significantly more accurate measurements in liquids using their
existing AFM hardware.
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[14] Schäffer T E, Cleveland J P, Ohnesorge F, Walters D A and

Hansma P K 1996 J. Appl. Phys. 80 3622–7
[15] Chen G Y, Warmack R J, Huang A and Thundat T 1995

J. Appl. Phys. 78 1465–9
[16] O’Shea S J and Welland M E 1998 Langmuir 14 4186–97
[17] Anczykowski B, Gotsmann B, Fuchs H, Cleveland J P and

Elings V B 1999 Appl. Surf. Sci. 140 376–82

10

http://dx.doi.org/10.1063/1.111597
http://dx.doi.org/10.1063/1.117835
http://dx.doi.org/10.1063/1.1371250
http://dx.doi.org/10.1063/1.3518965
http://dx.doi.org/10.1088/0957-4484/21/32/325703
http://dx.doi.org/10.1063/1.2840717
http://dx.doi.org/10.1063/1.2196052
http://dx.doi.org/10.1063/1.3238484
http://dx.doi.org/10.1063/1.3053369
http://dx.doi.org/10.3390/s8095927
http://dx.doi.org/10.1063/1.2713860
http://dx.doi.org/10.1063/1.2794426
http://dx.doi.org/10.1063/1.2767202
http://dx.doi.org/10.1063/1.363308
http://dx.doi.org/10.1063/1.360304
http://dx.doi.org/10.1021/la9801864
http://dx.doi.org/10.1016/S0169-4332(98)00558-3


Nanotechnology 22 (2011) 485502 D Kiracofe and A Raman

[18] Melcher J, Hu S and Raman A 2007 Appl. Phys. Lett. 91 53101
[19] Kiracofe D and Raman A 2010 J. Appl. Phys. 107 3506
[20] Lozano J R, Kiracofe D, Melcher J, Garcia R and

Raman A 2010 Nanotechnology 21 465502
[21] Sader J E and Jarvis S P 2004 Appl. Phys. Lett. 84 1801–3
[22] Volkov A, Burnell-Gray J and Datta P 2004 Appl. Phys. Lett.

85 5397
[23] Sader J E 1998 J. Appl. Phys. 84 64–76
[24] Tuck E O 1969 J. Eng. Math. 3 44
[25] Lantz M, Liu Y Z, Cui X D, Tokumoto H and Lindsay S M

1999 Surf. Interface Anal. 27 354–60
[26] https://nanohub.org/resources/abase
[27] Spletzer M, Raman A and Reifenberger R 2010 J. Micromech.

Microeng. 20 085024
[28] Hu S and Raman A 2008 Nanotechnology 19 375704
[29] Katan A, van Es M and Oosterkamp T 2009 Nanotechnology

20 165703

[30] Holscher H 2006 Appl. Phys. Lett. 89 123109
[31] O’Shea S 2001 Japan. J. Appl. Phys. 40 4309–13
[32] Kaggwa G B, Kilpatrick J I, Sader J E and Jarvis S P 2008

Appl. Phys. Lett. 93 011909
[33] Uchihashi T, Higgins M, Nakayama Y, Sader J and

Jarvis S 2005 Nanotechnology 16 49
[34] Han W and Lindsay S 1998 Appl. Phys. Lett. 72 1656
[35] Horn R G and Israelachvili J N 1981 J. Chem. Phys.

75 1400–11
[36] Patil S, Matei G, Dong H and Hoffmann P M 2005 Rev. Sci.

Instrum. 76 103705
[37] Labuda A, Kobayashi K, Kiracofe D, Suzuki K, Grütter P and

Yamada H 2011 AIP Adv. 1 022136
[38] Jourdan G, Lambrecht A, Comin F and Chevrier J 2009

Europhys. Lett. 85 31001
[39] Israelachvili J 1992 Intermolecular and Surface Forces 2nd edn

(New York: Academic)

11

http://dx.doi.org/10.1063/1.2767173
http://dx.doi.org/10.1063/1.3284206
http://dx.doi.org/10.1088/0957-4484/21/46/465502
http://dx.doi.org/10.1063/1.1667267
http://dx.doi.org/10.1063/1.1828581
http://dx.doi.org/10.1063/1.368002
http://dx.doi.org/10.1007/BF01540828
http://dx.doi.org/10.1002/(SICI)1096-9918(199905/06)27:5/6<354::AID-SIA541>3.0.CO;2-4
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
https://nanohub.org/resources/abase
http://dx.doi.org/10.1088/0960-1317/20/8/085024
http://dx.doi.org/10.1088/0957-4484/19/37/375704
http://dx.doi.org/10.1088/0957-4484/20/16/165703
http://dx.doi.org/10.1063/1.2355437
http://dx.doi.org/10.1143/JJAP.40.4309
http://dx.doi.org/10.1063/1.2950324
http://dx.doi.org/10.1088/0957-4484/16/3/009
http://dx.doi.org/10.1063/1.121143
http://dx.doi.org/10.1063/1.442146
http://dx.doi.org/10.1063/1.2083147
http://dx.doi.org/10.1063/1.3601872
http://dx.doi.org/10.1209/0295-5075/85/31001

	1. Introduction
	1.1. Background
	1.2. Common mistakes in using standard formulae for force and dissipation spectroscopy using piezo excitation in liquids

	2. Experimental measurement of base motion in liquids using laser Doppler vibrometer
	3. Proposed theory
	3.1. The fluid-borne excitation force
	3.2. Proposed method to quantitatively determine the fluid-borne excitation and base motion

	4. Experimental validation of proposed formula by integration of AFM and LDV
	5. Example quantitative force reconstruction
	5.1. Phase offset
	5.2. Small-amplitude (linear) tapping mode formulae
	5.3. Experimental demonstration

	6. Discussion
	6.1. Frequency dependence: the forest of peaks
	6.2. Off-resonant operation
	6.3. Uncertainty
	6.4. Influence of AFM system used

	7. Summary
	Acknowledgments
	References

